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Abstract— This work addresses mission planning for au-
tonomous underwater gliders based on predictions of an
uncertain, time-varying current eld. Glider submersibles are
highly sensitive to prevailing currents so mission planners must
account for ocean tides and eddies. Previous work in variable-
current path planning assumes that current predictions are
perfect, but in practice these forecasts may be inaccurate. Here
we evaluate plan fragility using empirical tests on historical
ocean forecasts for which followup data is available. We present
methods for glider path planning and control in a time-varying
current field. A case study scenario in the Southern California
Bight uses current predictions drawn from the Regional Ocean
Monitoring System (ROMS).

I. INTRODUCTION

We consider path planning for autonomous underwater
gliders based on advance forecasts of an uncertain, time-
varying current field. The system we describe will be tested
as part of the Ocean Observatories Initiative (OOI), a
science-driven oceanic sensor network. The OOI will inte-
grate moorings, radar and Autonomous Underwater Vehicles
(AUVs), assimilating real-time data into regional forecasting
models. The initial tests of this system will use underwater
gliders, autonomous submersibles designed for long duration
missions [4]. Gliders travel efficiently by changing buoyancy
and using winged surfaces to produce a sawtooth trajectory
(Figure 1). Gliders can travel for months on a single battery
charge, pausing at intervals on the surface to transmit science
data and receive commands.

Gliders are highly sensitive to prevailing currents. Coastal
current forces are often larger than the propulsion force
of the glider, and can change on time scales of hours.
Effective mission planning must exploit these forces by
placing the glider strategically to exploit beneficial tides and
eddies. Fortunately ocean models such as the Regional Ocean
Monitoring System, or ROMS [1], [2], [11] can now produce
current forecasts at time scales and resolutions sufficientto
inform glider plans. While a growing body of work addresses
path planning in a static current field [9], [5], [7], currents
in the glider scenario vary on time scales much shorter than
the mission duration. Dynamic currents of the Slocum glider
domain demand true spatiotemporal path planning. Advances
in this area include work by Zhang et al. [6] who optimize
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paths represented as continuous trajectories, and Soulignac
et al. whose wavefront method propagates path cost as a
function of departure time [8].

Fig. 1. Slocum Glider submersible, courtesy Rutgers University.

These approaches find optimal paths to a given spatial
location. However, our deployments will also require that
gliders be present at a specific time. Specifyingspatiotem-
poral goals is important both for tracking time-varying ocean
phenomena [10], [12] and for time-coordination of multiple
assets within the OOI. Early arrival will not suffice if the
glider cannot hold position against ocean currents. This
requires a new approach to path planning in time-varying
current fields. Recently we presented a wavefront algorithm
for path planning in time varying currents based on an
earliest valid arrival criterion. Our approach minimizes the
time of travel to the goal position under the constraint that
the glider is then capable of holding position against currents
until the desired time is reached [13]. This permits goals
specified as arbitrary spatiotemporal volumes.

Previous tests of variable-current path planning have as-
sumed that planning occurs with perfect knowledge of future
currents. In practice it is difficult to forecast currents accu-
rately and actual conditions can quickly diverge. This work
evaluates performance by simulating realistic discrepancies
between planning and runtime currents. We use historical
ocean current predictions for which followup data is avail-
able, providing an advance current prediction and the actual
conditions. Our study considers a case scenario using ROMS
predictions in the Southern California Bight. We present
our path planning methodology and some simple control
methods for tracking the path. Simulations compare current-
agnostic and current-sensitive mission planning using both
perfect and realistic forecasts. Finally, we conclude with
some quantitative guidelines for ocean modeling accuracy
and some qualitative recommendations for mission planning
in the future OOI.



Fig. 2. The 3D spatiotemporal grid. The glider begins in the lower center
and travels a path that visits 4 nodes before arriving at the goal location
(yellow node at top). The red rectangles showAxyt, the earliest valid arrival
time for each node’s spatial location. Arrival times are computed for all
nodes, but for clarity we hide arrival times for nodes not participating in
the optimal path.

Fig. 3. Dive profile for our simplified glider motion model using current
predictions at different depths. GPS updates are extended pauses at the
surface that occur at regular time intervals.

II. PATH PLANNING APPROACH

We use ROMS forecast models provide to provide a depth-
averaged current estimateCxyτ for an ocean volume with
discrete grid squares indexed by time intervalsτ , latitudex,
longitudey. A glider path is comprised ofsegments traveling
between adjacent nodes in the 3D grid. Segment endpoints
take specific continuous time values in their nodes’ intervals.
We treat the temporal and spatial dimensions differently:
segment endpoints must lie exactly on the physical locations
represented by grid points, but they can lie anywhere within
the continuous time interval covered by the grid square.
Figure 2 illustrates a simple four-segment path through the
spatiotemporal grid. The glider begins in the lower center and
travels a path to the goal location represented by the yellow
grid square at the top. The final segment of this trip consists
of a station keeping action; the glider waits at the same
location until it enters the time interval of the destination
node.

A. Travel time estimates

Path planning requires that we calculate the travel time
between adjacent grid squares. In practice forward velocity
is affected by dynamics of the dive trajectory and periodic
pauses for GPS acquisition. Moreover, the glider may deviate
from the straight-line path between grid squares since it can
only correct its heading at each GPS waypoint. Over long
distances these effects average out, so this high-level path
planner assumes fixed flight parameters yielding a constant
still-water velocity.

The path planner assumes that the glider will choose a
control propulsion that combines with the prevailing current
to yield a velocity in the desired direction of travel. We define
2-vectors corresponding to control propulsionvcontrol, a
constant local current with velocityCxyτ , and a resulting net
velocity vactual. The control velocity must have a magnitude
no greater than the nominal velocity of the vehicle in still
water, so that|vcontrol| ≤ m. The net velocity has magnitude
λ and follows the desired direction of traveld:

vactual = vcontrol + Cxyτ = λd (1)

We choose the propulsion velocityvcontrol to maximize
travel speed, producing the largest possible motion in the
desired direction of travel:

λ = max
vcontrol

|vcontrol + Cxyτ | (2)

A path between adjacent nodes is considered impossible if
the glider would require longer than a single time interval
to travel between them. Otherwise, the transit time between
adjacent nodes is determined by the net velocityλd.

Note that ROMS models actually supply depth-variable
current predictionsCxyτh with depth indicesh. We must
take these into account as well since the glider visits many
depths during travel. The current predictions vary in vertical
resolution from5m near the ocean surface down to500m
resolutions at depth. The glider follows a sinusoidal path
with maximum dive depth determined by the user-defined
maximum, the vehicle limit, or the sea floor (Figure 3).

The dive period is determined by flight parameters such
as pump displacement and the dive and climb angles. In
this study the vertical flight profile is taken as fixed; our
planner controls the glider’s heading but not its depth. The
fraction of time spent at each depth level approaches a known
quantity over long distances, so we integrate currents over
the depth dimension to estimate straight-line travel times
between latitude/longitude positions. The result is that the
glider can construct plans in the 3D volume comprised by
spatial dimensionsx and y, and the temporal dimensionτ .
The total current force experienced by the glider is taken to
be constant within each grid square; it is given byCxyτ :

Cxyτ =
1∑

h f(h)

∑

h

f(h)Cxyτh (3)

wheref(h) is the time in each glide cycle spent in the depth
interval h. Our planner uses a constant dive angle and a
maximum depth of200m or the sea floor depth, whichever
is less.



B. Wavefront path planning

Our path planning uses the spatiotemporal wavefront algo-
rithm of Thompson et al. [13]. The planner uses a wavefront
expansion to compute the time required to reach any location
and time in a 3D spatiotemporal volume. It optimizes an
earliest valid arrival criterion that seeks a path to reach a
given spatial location as early as possible, provided that the
glider can then hold position against currents until the desired
time is reached. This objective favors fast travel to the goal
location to provide a margin of error for recovering from
execution uncertainty. At the same time it permits goals to
be specified with a destinationtime.

Input : NodesN , Current predictionsC, Start location
Nstart

Output : PathP = {Pi}
n
i=1

Initialize Astart ← 0, all otherA ← inf1
Initialize wavefront queueQ = {Nstart}2
while Q not empty do3

find “parent node”Np ∈ Q at xp, yp, τp minimizing4
Ap

Q← Q \ Np5

define “hold position destination”Nh at6
(xp, yp, τp + 1)
if Nh reachable from Np then7
Ah ← Ap8
Mh ← Np9
Q← Q ∪Nh10

foreach (xc, yc) neighboring Np do11
if (xc, yc) reachable from Np then12

if Ap /∈ τp then13
tdepart ← min t : t ∈ τp14

else15
tdepart ← Ap16

tarrival ← tdepart+ travel time (fromC)17
τc = τ : tarrival ∈ τ18
“child” nodeNc at (xc, yc, τc)19
if tarrival < Ac then20
Ac ← tarrival21
Mc ← Np22
Q← Q ∪Nc23

P ← {Nend} for Nend minimizingAend24
Nprev ←Mend (parent ofNend)25
while Nstart /∈ P do26
Nprev ←Mprev (parent ofNprev)27
P ← P ∪Nprev28

return P29

Algorithm 1 : Computation of arrival times and parent nodes
satisfying the “earliest valid arrival” criterion.Q is a priority queue
of unexpanded nodes maintained in order of increasing arrival
times. Subscriptsp, c, h indicate data associated with the current
parent, child, and station-keeping destination nodes. After finding
the set of “best parents”M we compute the optimal pathP by
tracing parents from the goal back to the origin.

The path planning algorithm computesA ∈ IR for each
node; this is defined as the earliest possible time of arrival
to location (x, y) for the “hold position” action ending in
time intervalτ . Often a node directly following another at
the same physical location will take its predecessor’s value
of A due to position-holding. For example, in Figure 2 the

final segment consists of a hold position action. Physical
locations have not changed between the final two nodes so
their earliest arrival times are identical. We record the earliest
possible arrival time yet discovered for each node in the grid.
A wavefront algorithm recursively expands nodes until the
goal location is reached.

Our path planning strategy begins by initializing a queueQ
of unexpanded reachable nodes. Initially this queue contains
the starting location. Each expansion operation takes the top
nodeNp of the queue and simulates travel in each of the 8
compass directions, as well as holding position at the current
node into the next time step.

If the hold position action is successful it results in the
parent’s time of arrivalAp being preserved in the same
physical location at the next time interval. For travel between
different physical locations we compute a travel timet based
on the earliest possible time of departure from the parent
node. If the parent node was itself reached by a hold position
action, then it is occupied from the start of its interval. Inthis
case the earliest possible departuret happens at the start of
the time interval. We can identify this case whenever a parent
is occupied prior to its own time interval, i.e.Ap /∈ τp. This
is a subtle point: a node’s associated arrival time need not
be within the time interval represented by the node. Instead
it refers to the earliest valid arrival, i.e. the earliest possible
arrival which then permits position holding until enteringthe
node.

We compute travel timest from equation 2 assuming
a constant local current velocity. Depending on the time
required, the destination child node could turn out to be in
either the parent’s time interval or the following one. The
resulting arrival time is the best arrival yet realized in the
child nodeNc. We retain paths corresponding to the earliest
possible arrival time for each child, which requires storing a
single best parentMc for each reachable node in the grid.

The algorithm continues recursively expanding child nodes
until it has accounted for all grid locations (Algorithm 1).We
expand new nodes in order of increasing arrival times which
requires maintaining a sorted queue tantamount to a wave-
front expansion [7] or Dijkstra method. This guarantees that
discounting discretization effects, the earliest possible arrival
is known for every reachable node; the wavefront solution
is optimal up to discretization accuracy. After completely
expanding all the nodes in the grid one can trace a valid path
from any goal node back to the start using the recorded parent
nodes (lines 24-29). The result of the planning procedure is
a sequence of segments through adjacent 3D grid squares
that is theoretically within the glider’s physical capability
and optimizes the earliest valid arrival criterion.

The arrival timesA also define areachability function:
the locations for a particular time step that are reachable
by a glider beginning at the original start location. The
isocontours of this function constitute a useful data product
for mission planners; they show legal locations for waypoint
placement during glider planning. Figure 4 shows a glider
path together with reachability isocontours.

We discounted any trial for which the currents at the
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Fig. 4. Typical solution for earliest arrival showing the final simulation
time step. The red path represents the optimal glider path. Isocontours of
the reachability function are shown in yellow and green, with blue arrows
showing the final timeslice of the time-varying current field.

endpoint were greater than the glider’s own propulsion.
These scenarios resulted in attempts to pass through the
target node at speed, by first lingering in calmer waters
and then dashing through the target at the appropriate time.
Naturally these plans were quite fragile, but requiring at
least one time interval-worth of station-holding remediedthis
problem. If the mission planners don’t care about targeting
a particular time of arrival but simply want to reach a
given spatial location as quickly as possible, the algorithm
can easily be modified to accommodate this scenario. One
simply stops the planning when any node in the target spatial
position is surrounded by expanded neighbors, after which
one can be certain that there is no earlier-arriving path.

III. EXPERIMENTAL METHOD

Our test scenario uses historical ROMS forecasts for the
Southern California Bight in August and September 2009.
ROMS is a 4D-VAR based oceanographic simulation that
models ocean convection and current processes to predict
currents, sea height, and salinity. It uses boundary conditions
provided by real-time data streams such as CODAR (radar
measurements of surface current speed), sea surface tem-
perature, and moorings. The numerical model provides two
main current-related data products.Nowcasts are estimates
of current ocean conditions based on the latest available
real-time data. The nowcasts are updated every6 hours.
Alternatively, currentforecasts use a numerical simulation to
predict future ocean conditions up to48-hours in advance.

Figure 5 shows typical examples of48-hour forecast and
nowcast estimates for currents at two locations in the simula-
tion area. Note that current velocities often reach magnitudes
of 0.8m/s; this exceeds the glider’s own propulsion which
would carry it at just0.2 − 0.3m/s in still water. There is
also a strong tidal influence apparent with 6-hour periodicity.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

           Simulation hours

C
ur

re
nt

 E
as

t, 
m

/s

 

 

nowcast
forecast

Fig. 5. Estimates of Eastward current velocity for a locationnear the Los
Angeles coastline (33.5 N, 241.5 E). Both the hourly forecast and 6-hour
nowcast data products are shown.

Finally, the forecast and nowcast products tend to diverge
in the later hours of the simulation; this is typical of the
simulation domain and reflects the accumulation of errors in
the forecast predictions.

Glider deployment operators conventionally refine glider
plans during most communications periods; this allows them
to refine the entire mission plan at intervals of6 − 8
hours. However, in principle it is still advantageous to plan
paths based on the full predictive window of ROMS current
forecasts. Not only does this optimize glider travel by placing
the vehicle in more favorable long-term positions but it could
alleviate the onerous operational requirements of manually
monitoring glider progress throughout the day. Thus, our
experiment evaluates path planning for the full 48-hour time
scale of ROMS predictions.

We model a vehicle similar to the Webb Research Slocum
glider [14] that navigates by dead-reckoning between peri-
odic GPS acquisitions. We translate the path planner’s opti-
mal trajectory into a timed sequence of segments, with each
segment active during a specific time duration. The physical
vehicle cannot follow this path perfectly because it receives
only periodic position updates. Instead we use a simple
pursuit method to track the trajectory; we define intermediate
goal waypoints that are revised at the start of each dive cycle.
At each surfacing the simulated glider updates its position
using GPS and adjusts the glider heading based on the
current active waypoint. Our simulation presumes surfacing
activities every60 minutes. Each planning trial requires that
the glider travel from a predefined start location to some end
location approximately30km distant. Ground-truth currents
are drawn from ROMS nowcasts. We selected25 test paths
to cover the area of interest with a variety of headings.

The tests compare three different path planning strategies:
• An omniscient wavefront approach computes a path

based on the wavefront planning and perfect knowledge
of the run-time currents. Naturally this is unrealistic for
real ocean conditions.

• A realistic wavefront method uses wavefront planning
based on the error-prone currentforecast data products.

• A simple alternative does not use path planning at all.
Instead it always travels directly towards the final goal.

Each segment of the trajectory is active during a specific time
period; we compute a heading to reach the active segment’s
endpoint at each surfacing. We also consider several methods
of deriving this direction (Figure 6). Current-sensitive control



Fig. 6. We use several control strategies to track the planned trajectory.
These include current-sensitive control that accounts explicitly for predictive
forces, current-blind control that aims directly toward thecurrent active
waypoint, and a third option that forgoes path planning altogether.

computes the control propulsion that combines with pre-
dicted currents to carry the vehicle toward the intermediate
goal. Current-blind control applies a propulsion force in the
direction of the next waypoint, so that the path itself uses
current predictions but the local waypoint-following does
not. This is more realistic for deployment scenarios where
bandwidth limits preclude uploading current forecasts to the
glider. Finally, a greedy strategy with no path planning does
not have access to any current forecast information so it
always propels the vehicle in the direction of the final goal.

Our experiments use wavefront planning to find inter-
polating waypoints for each path, in both directions, for
two 48-hour periods spanning Sept 1 to 5, 2009. The
goal for each trial is to position the glider at the opposite
waypoint 48-hour planning window. We set gliders’ still-
water horizontal velocity to0.3m/s. Gliders plan within a
travel zone consisting of the rectangular region enclosingthe
start and end waypoints, with an additional latitude/longitude
margin of0.2 degrees. Any valid glider path must lie entirely
within this spatiotemporal volume. We simulate two different
spatial resolutions for the current predictions. The first,a
full-resolution simulation with1km grid squares, is the
highest resolution typically used for ROMS forecasts. We
also simulate the common6km grid square resolution by
subsampling the current forecast data.

After the planning is complete we simulated the glider
using the simple motion model described above. The plan
execution environment uses the nowcast data, which differs
somewhat from the realistic current forecasts. This simulates
a realistic discrepancy between predicted and actual currents.
Another source of execution uncertainty for both realistic
and omniscient planners is the period of the dive cycle. We
update the simulated glider’s position every60 minutes to
simulate GPS acquisition and course corrections at periodic
surfacing events.
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Fig. 7. Emperical glider positions and control propulsions for our
three control strategies with hourly surfacings. Current-blind control (white
circles) generally strays slightly down stream of the idealpath.

IV. RESULTS

Each test has one of three outcomes. The first possibility,
which can happen for either the realistic or omniscient
planner, occurs whenever there is no valid path to reach the
goal in the 48-hour window. This generally happens in the
case of strong countervailing currents that overwhelm the
glider’s propulsion. In this case no plan is generated and
we do not run the followup simulation. This case comprises
approximately50% of the planning trials. Alternatively when
a trial does not use a planner, or the path planning system
identifies a valid plan, in which cases the simulated glider
either succeeds to fails to reach the goal.

We compute an error score for each trial based on the
distance between the final glider position and the desired
physical location. Figure 8 shows the distributions of these
errors over all simulation trials. This comparison excludes
runs where the path planner finds no valid path. Note that
our simulation updates heading at60 minute intervals, so
it is unreasonable for a glider to hold position exactly at
the target. Therefore distances less than2km are tan-
tamount to perfect successes, and distance errors within
5km are often sufficient for mission planning. Our tests
did not show a significant performance difference between
the different current-sensitive planning methods, or between
control strategies utilizing the same current-sensitive plan.
Anecdotal evidence from trials such as Figure 7 suggest that
current-sensitive control could provide a benefit, but thisis
not significant for the majority of the simulated trials we
considered.

On the other hand there is a clear difference between
methods utilizing current predictions and greedy methods
that do not involve a path planner. Simulations without a path
planner can fail spectacularly; the worst quartile of greedy
trials ends with the glider at least13km off target, but when
planning is involved only a handful of outlier trials misses
the target. The benefit is largely due to the planner’s ability to
reject invalid paths. However, even in trials where valid paths
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Fig. 9. Mean absolute velocities over all trials.

are found there is a significant median difference of errors,
suggesting that planning-based approaches provide improved
accuracy over planner-free methods (significant to 95%).

These results are corroborated by mean absolute velocities
(Figure 9). Current-sensitive path plans make faster progress
toward the goal, offering a higher rate of progress per time
step by exploiting time-varying currents.

V. CONCLUSIONS

Glider mission planning is a challenging problem domain
because the phenomena under observation and vehicle mo-
tion constraints can change dramatically on mission time
scales. This work has sought to quantify the effect of forecast
inaccuracy on the validity of mission plans. In our trials,
glider performance using path planning from 48-hour fore-
casts was statistically indistinguishable from performance
using perfect current predictions.

The main advantage of the path planner in these tests is
to recognize and exclude dangerous destinations. The path
planner is quite effective at rejecting infeasible paths where
the glider would be pushed off course, which provides a valu-
able means of reducing risk in automated mission planning.
At the same time, the reachability estimates computed by the
path planner offer an intuitive way to visualize the envelope
of planning possibilities and can assist gliders to identify safe
mission goals that don’t carry the glider through dangerous
tides or eddies.

The path planner described in this work will shortly be
deployed as part of a broader mission planning system within
the Ocean Observatories Initiative Observing System Simula-
tion Experiment (OSSE). Later it will join a mission planning
system for physical gliders in the Mid-Atlantic Bight. We
hope to improve the system with more sophisticated motion
models and the ability to modify glider flight parameters
mid-mission.
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[5] C. Pêtr̀es, Y. Pailhas, P. Patrón, Y. Petillot, J. Evans and D. Lane.
”Path Planning for Autonomous Underwater Vehicles,”IEEE Trans.
Robotics, 2007.

[6] W. Zhang, T. Inanc, S. Ober-Blöbaum, and J. E. Mardesn, ”Optimal
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